GPU在AI计算中扮演着越来越重要的角色
Brad Gerstner:
那是,那是我们在11月22日非常兴奋,因为我们有来自Inflection的Mustafa这样的人,而没有来自Character的人来我们办公室谈论投资他们的公司。他们说,好吧,如果你不能投资我们的公司,那就买英伟达,因为世界上每个人都在试图获得英伟达芯片来构建这些将改变世界的应用程序。当然,寒武纪时刻发生在ChatGPT上。尽管如此,这25位分析师仍然专注于加密货币赢家,以至于他们无法想象世界上正在发生的事情。所以最终规模更大了。用非常通俗的英语来说,对Blackwell的需求是疯狂的,而且只要你能,只要你能预见,它就会一直这样下去。当然,未来是未知的,不可知的。但为什么批评者会错得这么离谱,认为这不会像思科在2000年那样过度建设。
黄仁勋:
思考未来的最佳方式是从第一原则出发,对吗?好的,那么,对于问题,我们正在做的事情的第一原则是什么?第一,我们在做什么?我们正在做的第一件事就是重新发明计算,不是吗?我们刚才说过,未来计算的方式将是高度机器学习的。是的,高度机器学习的。好的,几乎我们所做的一切,几乎每一个应用程序,Word、Excel、Powerpoint、Photoshop、Premier,AutoCAD,你最喜欢的应用程序都是手工设计的。我向你保证,未来它将高度机器学习。对吧?所以所有这些工具都会如此,最重要的是,你会有机器,代理来帮助你使用它们。好的。所以现在我们知道这是事实。对吧?我们已经重新发明了计算。我们不会回头了。整个计算技术堆栈都在被重新发明。好的。既然我们已经做到了这一点,我们说过软件会有所不同。软件能写的东西会有所不同。我们使用软件的方式也会有所不同。所以现在让我们承认这一点。所以这些就是我现在的基本事实。是的。
现在的问题是会发生什么?让我们回顾一下过去的家庭计算。过去的计算机投入了1万亿美元。我们看看,只要打开门,看看数据中心,看看它。这些计算机是你想要的未来吗?答案是否定的。你那里有所有这些CPU。我们知道它能做什么,不能做什么。我们只知道,我们有1万亿美元需要现代化的数据中心。所以现在,在我们说话的时候,如果我们要在未来四五年内对这些旧东西进行现代化改造。这不算不合理。
所以我们有一个趋势,你正在与那些必须对其进行现代化改造的人进行交谈。是的,他们正在GPU上对其进行现代化改造。就是这样。
我们再做一次测试。你有500亿美元的资本支出。你喜欢花选项A,选项B,为未来建立资本支出,对吗?
或者像过去一样建立资本支出,现在你已经拥有了过去的资本支出,对吗?是的,对。它就在那里。反正也没有好转多少。莫尔斯定律基本结束了。那为什么要重建它呢?
我们只拿出500亿美元,投入生成式AI,对吗?所以现在你的公司变得更好了。对吗?现在你会投入这500亿美元中的多少?好吧,我会投入500亿美元的100%,因为我已经有了四年的基础设施,这是过去的。
所以现在你只是,我只是从某人从第一原理思考的角度来推理,这就是他们正在做的事情。聪明的人在做聪明的事情。现在,第二部分是这样的。那么我们就有价值一万亿美元的产能。去吧,比尔。
价值数万亿美元的基础设施。大概是1500亿美元。好的。所以我们有1万亿美元的基础设施需要在未来四五年内建设。好吧,我们观察到的第二件事是软件的编写方式不同,但软件的使用方式也不同。
未来,我们会有代理。我们公司会有数字员工。在你的收件箱里,你会看到这些低矮的面孔上的小点。未来,事情意味着AIS的低矮图标。对吧?我会把这些发给他们。
我不再用C++编程电脑了,我要用提示来编程AI。对吧?现在,这和我今天早上跟我聊天没什么不同。
我来这里之前写了很多电子邮件。我当然在提示我的团队。我会描述背景,描述我所知道的基本限制,描述他们的任务。我会留下足够的空间,我会给出足够的方向,让他们明白我需要什么。我想尽可能清楚地说明结果应该是什么,但我留下了足够的模糊空间,一点创意空间,这样他们就可以给我惊喜。
对吧?这和我今天提示AI没什么不同。是的,这正是我提出AI的方式。因此,我们将要现代化的基础设施之上,将会有一个新的基础设施。这个新的基础设施将是操作这些数字人的AI工厂,它们将全天候运行。
我们将为世界各地的所有公司提供这些设备。我们将在工厂中拥有它们,我们将在自主系统中拥有它们。对吗?所以有一整层计算结构。这一整层我称之为AI工厂,世界必须制造,但今天根本不存在。
所以问题是,这有多大。目前还不知道。可能有几万亿美元。我知道现在的情况,但当我们坐在这里建造时,美妙之处在于,这个新数据中心的现代化架构和AI工厂的架构是一样的。这是一件好事。
Brad Gerstner:
您能否说清楚,您有一万亿的旧东西。您必须进行现代化。您至少有一万亿的新AI工作负载即将到来。是的,您今年的收入将达到1250亿美元。曾经有人告诉过你,这家公司的市值永远不会超过10亿美元。当你今天坐在这里时,有什么理由吗?对,如果你在数万亿的Tam中只有1250亿美元,那么你将来的收入将不会是现在的2倍或3倍。你的收入没有增长有什么原因吗?没有。
黄仁勋:
正如你所知,并不是所有事情都如此,公司只受鱼塘大小的限制,金鱼池只能这么大。所以问题是,我们的鱼塘是什么?我们的池塘是什么?这需要很多想象力,这就是为什么做市商在不创建新鱼塘的情况下考虑未来的原因。回顾过去并试图夺取市场份额很难弄清楚这一点。对。份额获取者只能这么大。当然。做市商可以非常大。当然。
所以,我认为我们公司拥有的好运是,从公司成立之初,我们就必须创造市场,才能在其中畅游。当时人们没有意识到这一点,但现在人们已经意识到了,但我们处于创造3D游戏PC市场的起点。我们基本上发明了这个市场,以及所有的生态系统和显卡生态系统,我们发明了这一切。因此,需要发明一个新的市场,以便以后为其服务,这对我们来说是一件非常舒服的事情。
黄仁勋:我为OpenAI的成功感到高兴
Brad Gerstner:
众所周知,OpenAI 本周以 1500 亿美元的估值筹集了 65 亿美元。我们都参与了。
黄仁勋:
是的,真的为他们感到高兴,真的很高兴他们走到了一起。是的,他们做了一件伟大的事情,团队也做得很好。
Brad Gerstner:
据报道,他们今年的收入或营业收入将达到50亿美元左右,明年可能会达到100亿美元。如果你看看今天的业务,它的收入大约是谷歌首次公开募股时的两倍。他们有2.5亿,是的,每周平均用户数为2.5亿,我们估计这是谷歌首次公开募股时的两倍。如果你看看这家公司的市盈率,如果你相信明年会有100亿美元,那么它大约是预期收入的15倍,也就是谷歌和Meta在首次公开募股时的市盈率。想象一家22个月前收入为零、每周平均用户数为零的公司。
跟我们谈谈OpenAI作为合作伙伴对你的重要性,以及OpenAI作为推动公众对AI的认识和使用的力量。
黄仁勋:
好吧,这是我们这个时代最重要的公司之一,一家追求AGI愿景的纯AI公司。不管它的定义是什么。我几乎不认为定义是什么完全重要,我也不认为时机很重要。我知道的一件事是,AI将随着时间的推移拥有能力路线图。而这个能力路线图将非常壮观、奇特。在此过程中,早在它达到任何人对AGI的定义之前,我们就会充分利用它。
你所要做的就是,现在,在我们说话的时候,去和数字生物学家、气候技术研究人员、材料研究人员、物理科学家、天体物理学家、量子化学家交谈。你可以去问视频游戏设计师、制造工程师、机器人专家。选你最喜欢的。无论你想选择哪个行业,你都要深入研究,和重要的人交谈,问他们,AI是否彻底改变了你的工作方式。你收集这些数据点,然后回头问问自己,你想有多怀疑。因为他们不是在谈论AI的概念优势。他们现在谈论的是将来使用AI。现在,农业技术、材料技术、气候技术,你选择你的技术,你选择你的科学领域。它们正在进步。AI正在帮助他们推进他们的工作。
现在,正如我们所说,每个行业、每个公司、每个高度、每所大学。难以置信。对吧?绝对是这样。我会以某种方式改变商业。我们知道这一点。我的意思是,我们知道它是如此切实。
今天。它正在发生。它正在发生。所以,我认为ChatGPT 的觉醒引发了它,这完全令人难以置信。我喜欢他们的速度和他们推动这一领域发展的独特目标,这真的很重要。
Brad Gerstner:
他们建立了经济引擎,可以为下一个模型前沿提供资金。我认为硅谷正在形成一种共识,即整个模型层、商品化的 Llama 使许多人能够以非常低廉的价格建立模型。所以早期我们有很多模型公司。这些,特征、语调和凝聚力都列在清单上。
很多人质疑这些公司是否能够在经济引擎上建立逃逸速度,从而继续资助下一代。我自己的感觉是,这就是你看到整合的原因。OpenAI 显然达到了速度。他们可以资助自己的未来。我不清楚其他许多公司是否能做到。这是对模型层现状的公平评估吗?我们将像在许多其他市场一样,将这种整合到能够负担得起的市场领导者身上,他们拥有经济引擎和应用程序,可以让他们继续投资。
仅仅拥有强大的GPU并不能保证一家公司在AI领域取得成功
黄仁勋:
首先,模型和AI之间存在根本区别。是的。模型是必不可少的要素。对。对于AI来说,它是必要但不充分的。对。所以,AI是一种能力,但用于什么,对吗?那么它的应用是什么?对吗?软件驾驶汽车的AI与人类机器人的AI有关,但并不相同,后者与聊天机器人的AI有关,但并不相同。
所以你必须了解分类法。是的,堆栈的分类法。在堆栈的每一层,都会有机会,但不是堆栈的每一层都为每个人提供无限的机会。
现在,我刚刚说了一句话,你所做的就是用GPU替换模型这个词。事实上,这是我们公司 32 年前的一个伟大观察,即 GPU、图形芯片或GPU与加速计算之间存在根本区别。加速计算与我们在 AI 基础设施方面所做的工作不同。它们是相关的,但并不完全相同。它们是相互叠加的。它们并不完全相同。而且这些抽象层中的每一个都需要完全不同的技能。
真正擅长构建GPU的人不知道如何成为一家加速计算公司。我可以举例说明,有很多人制造 GPU。我不知道哪一个是后来的,我们发明了 GPU,但你知道我们不是,我们不是今天唯一一家制造GPU的公司,对吗?到处都有 GPU,但它们不是加速计算公司。有很多人这样做。他们的加速器可以进行应用程序加速,但这与加速计算公司不同。例如,一个非常专业的AI应用程序,对吧,这可能是一件非常成功的事情,对吗?
Brad Gerstner:
这就是 MTIA(Mata自研的下一代AI加速芯片)。
黄仁勋:
对。但它可能不是那种带来影响力和能力的公司。所以你必须决定你想成为什么样的人。所有这些不同领域可能都有机会。但就像建立公司一样,你必须注意生态系统的变化以及随着时间的推移哪些东西会被商品化,认识到什么是功能,什么是产品,对,什么是公司。好的。我刚刚讲过,好吧,你可以用很多不同的方式来思考这个问题。
xAI和孟菲斯超级计算机集群已经到了“20万到30万个GPU集群的时代”
Brad Gerstner:
当然,有一家新进入者有钱、有智慧、有野心。那就是 xAI。是的,对。而且,有报道称你和 Larry Ellison(甲骨文创始人)和马斯克共进晚餐。他们说服你放弃 100000个H100芯片。他们去了孟菲斯,在几个月内就建立了一个大型连贯超级集群。
黄仁勋:
三点,不要划等号,好吗?是的,我和他们共进晚餐。
Brad Gerstner:
你认为他们有能力建立这个超级集群吗?有传言说他们想要另外十万个 H200,对吧,来扩大这个超级集群的规模。首先,跟我们谈谈 X 和他们的野心以及他们取得的成就,但同时,我们已经到了20万到30万个GPU集群的时代了吗?
黄仁勋:
答案是肯定的。然后首先,承认成就。从概念的那一刻到数据中心准备好让英伟达在那里安装我们的设备,再到我们启动它、连接好它并进行第一次训练的那一刻,这一切都值得。
黄仁勋:
好的。所以第一部分就是在这么短的时间内建造一个巨大的工厂,水冷、通电、获得许可,我的意思是,这就像超人一样。是的,据我所知,世界上只有一个人能做到这一点。我的意思是,马斯克对大型系统的工程和建设以及资源调配的理解是独一无二的。是的,这真是令人难以置信。当然,他的工程团队也很出色。我的意思是,软件团队很棒,网络团队很棒,基础设施团队很棒。马斯克对此深有体会。
从我们决定与工程团队、网络团队或基础设施计算团队、软件团队一起开始规划的那一刻起,所有的准备工作都提前了。然后所有的基础设施、所有的物流、当天运来的技术和设备数量、视频基础设施和计算基础设施,以及培训所需的所有技术,19 天都悬而未决,你想要什么吗?做了。
退一步想想,你知道 19 天是多少天吗?19 天是几周吗?对吧?如果你亲眼看看,技术的数量是令人难以置信的。所有的布线和网络,英伟达设备的网络与超大规模数据中心的网络非常不同。好的,一个节点需要多少根电线。计算机的背面全是电线,而将这一大堆技术和所有软件集成在一起,真是不可思议。
所以我认为马斯克和X团队所做的,我非常感激他承认我们与他一起进行的工程工作以及规划工作等等。但他们取得的成就是独一无二的,以前从未有过。只是从这个角度来看。十万个 GPU,作为一个集群,这很容易成为地球上最快的超级计算机。你建造的超级计算机通常需要三年的规划时间。然后他们交付设备,需要一年的时间才能让它们全部运转起来。是的,我们说的是 19 天。
Clark Tang:
英伟达的功劳是什么?
黄仁勋:
一切都已经正常运转了。是的,当然,还有一大堆 X 算法、X 框架、X 堆栈等等。我们说我们有大量逆向集成要做,但规划非常出色。只是预先规划。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...