
General Introduction
Laminar is an open source AI engineering optimization platform focused on AI engineering from first principles. It helps users collect, understand and use data to improve the quality of LLM (Large Language Model) applications.Laminar provides comprehensive observability, text analytics, evaluation and cue chain management capabilities to support users in building and optimizing complex AI products. Whether it's data tracking, online evaluation, or dataset construction, Laminar provides powerful support to help users achieve efficient AI development and deployment.
Its modern, open source technology stack includes Rust, RabbitMQ, Postgres, Clickhouse, and more to ensure high performance and low overhead. Users can deploy quickly with Docker Compose or enjoy full functionality using a hosted platform.

DEMO: https://www.lmnr.ai/


Function List
- Data tracking: Document each step of the execution of the LLM application, collecting valuable data that can be used for better evaluation and fine-tuning.
- Online Assessment: Set up LLM as a rater or use a Python script evaluator for each received span.
- Data set construction: Constructing datasets from tracking data for evaluating, fine-tuning, and prompting engineering.
- Cue Chain Management: Support for building and hosting complex cue chains, including agent hybrid or self-reflexive LLM pipelines.
- Open source and self-hosted: Completely open source, easily self-hosted, and ready to go with just a few commands.
Using Help
Installation process
- Cloning GitHub repositories:
git clone https://github.com/lmnr-ai/lmnr
- Go to the project catalog:
cd lmnr
- Use Docker Compose to start:
docker compose up -d
Function Operation Guide
Data tracking
- initialization: Import Laminar in the code and initialize the project API key.
from lmnr import Laminar, observe Laminar.initialize(project_api_key="...")
- comment function: Use
@observe
Annotate functions that need to be traced.@observe() def my_function(): ...
Online Assessment
- Setting up the Evaluator: The LLM can be set up to act as a rater or use a Python script evaluator to evaluate and label each received span.
# Example Code evaluator = LLMJudge() evaluator.evaluate(span)
Data set construction
- Creating Data Sets: Construct datasets from tracking data for subsequent evaluation and fine-tuning.
dataset = create_dataset_from_traces(traces)
Cue Chain Management
- Build a cue chain: Support for building complex cue chains, including agent mixing or self-reflective LLM pipelines.
chain = PromptChain() chain.add_prompt(prompt)
self-hosted
- Self-hosting Steps: To start self-hosting with just a few commands, make sure Docker and Docker Compose are installed in your environment.
git clone https://github.com/lmnr-ai/lmnr cd lmnr docker compose up -d
data statistics
Related Navigation

AI video subtitle translation and dubbing tool, supporting multi-language input and translation, providing one-stop solution from video acquisition to subtitle translation and dubbing.

MindSpore
Huawei's full-scenario deep learning framework is designed to provide full-stack AI capabilities that are easy to develop and efficient to execute, supporting the complete process from data loading and model building to training, evaluation and deployment.

Gemma 3n
Google introduced a lightweight open source large language model , both high performance and easy to deploy , suitable for local development and multi-scenario applications .

AutoGPT
Based on the GPT-4 open-source project, integrating Internet search, memory management, text generation and file storage, etc., it aims to provide a powerful digital assistant to simplify the process of user interaction with the language model.

SpeciesNet
Google open-sourced a model that uses artificial intelligence technology to analyze camera trap photos to automatically identify animal species.

AingDesk
Open source one-click deployment tool for AI models, which provides users with a convenient platform to run and share a variety of big AI models.

SkyReels-V1
The open source video generation model of AI short drama creation by Kunlun World Wide has film and TV level character micro-expression performance generation and movie level light and shadow aesthetics, and supports text-generated video and graph-generated video, which brings a brand-new experience to the creation of AI short dramas.

MetaGPT
Multi-intelligent body collaboration open source framework, through the simulation of software company operation process, to achieve efficient collaboration and automation of GPT model in complex tasks.
No comments...