
BERT (Bidirectional Encoder Representations from Transformers) is a large-scale pre-trained language model based on the Transformer architecture, proposed by Google AI in 2018.BERT learns text by pre-training on large-scale unlabeled texts with contextual information in the text, thus achieving significant results in various natural language processing tasks.
I. Model Architecture
The architecture of BERT is based on the encoder part of the Transformer, but unlike traditional Transformer models that use only a unidirectional language model for pre-training, BERT uses a bi-directional Transformer encoder, which allows the model to take into account the contextual information at the same time.The input representation of BERT consists of word embeddings, paragraph embeddings, and positional embeddings, which are summed up through the summation of these three embeddings to get the final input representation.
II. Pre-training tasks
BERT uses two tasks in the pre-training phase:
- Masked Language Model (MLM): Randomly mask a portion of words in an input sequence and then ask the model to predict these masked words. This task forces the model to learn contextual information about each word, since the model needs to predict the masked words based on the surrounding words.
- Next Sentence Prediction (NSP): Given two sentences A and B, the model needs to determine if B is the next sentence of A. This task enables the model to learn sentence-level representations and understand the relationships between sentences.
III. Pre-training data
BERT uses a large amount of unlabeled text data such as BooksCorpus (containing about 800 million words) and English Wikipedia (containing about 2.5 billion words) in the pre-training phase. These data were pre-processed and divided into several sentence pairs for the training of both MLM and NSP tasks.
IV. Fine-tuning and application
After pre-training is completed, the model parameters of BERT can be fixed or fine-tuned for various natural language processing tasks. For a specific task, it is only necessary to add some extra layers (e.g., classification layer, sequence annotation layer, etc.) to BERT and then use the annotated data for fine-tuning.BERT has achieved remarkable results in a variety of natural language processing tasks, such as text categorization, named entity recognition, question-answer systems, and sentiment analysis.
V. Model variants
With the wide application of BERT, researchers have proposed many variant models of BERT to adapt to different tasks and scenarios. For example, RoBERTa adds more training data and longer training time to BERT to improve the performance of the model; DistilBERT reduces the model size of BERT through the knowledge distillation technique while maintaining a better performance; and BERT-large is a BERT model with more parameters and higher performance.
BERT is a powerful and flexible large-scale pre-trained language model that has achieved remarkable results in various natural language processing tasks. By pre-training on large-scale unlabeled texts, BERT is able to learn rich contextual information, providing strong support for various natural language processing tasks.
data statistics
Relevant Navigation

xAI released an open source large language model based on hybrid expert system technology with 314 billion parameters designed to provide powerful language understanding and generation capabilities to help humans acquire knowledge and information.

FaceFusion
AI face swap open source project that uses deep learning techniques to achieve high quality face replacement and image processing .

SmartResume
Ali open source SmartResume is a high-precision resume parsing system based on OCR and lightweight large models, which can convert 12 formats of resumes such as PDF/pictures into structured data in seconds, with an accuracy rate of 93.1%.

SeekDB
OceanBase is the world's first open source AI-native database, which focuses on multimodal hybrid search, minimal development and extreme security, redefining the way data and AI converge and helping developers build high-performance intelligent applications with a single click.

AutoGPT
Based on the GPT-4 open-source project, integrating Internet search, memory management, text generation and file storage, etc., it aims to provide a powerful digital assistant to simplify the process of user interaction with the language model.

PromptEnhancer
Tencent's open source Chinese text-to-image prompt word enhancement framework that optimizes user-input prompts and improves the image quality and semantic accuracy of the generated model.

Confucius-o1
NetEaseYouDao launched the first 14B lightweight model in China that supports step-by-step reasoning and explanation, designed for educational scenarios, which can help students efficiently understand complex math problems.

DeepClaude
An open source AI application development platform that combines the strengths of DeepSeek R1 and the Claude model to provide high-performance, secure and configurable APIs for a wide range of scenarios such as smart chat, code generation, and inference tasks.
No comments...
